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The time required to pull a large object from a sandy seabed is estimated by assuming 
that the seabed is porous but rigid. The phenomenon of breakout (i.e., sudden release) 
is shown to occur without the assumption of elasticity of the soil skeleton (Foda 1982). 
A new case of wedge-shaped gap is also studied, and compared to a uniform gap. 
Laboratory experiments are shown to support the theory. 

1. Introduction 
In the positioning of a large caisson or a gravity platform, the operating of 

submarines, or the salvaging of sunken ships, it is useful to know the time required 
to lift the object off the sea bottom for a prescribed vertical force. From field 
experience, it  is known that the initial increase of the gap between the object and 
the seabed is a very slow process, until a critical time when the object is broken loose 
suddenly. This phenomenon is called breakout. Because of its importance in the 
operation and rescue of submarines, a research project was carried out by the U.S. 
Naval Civil Engineering Laboratory at  Port Hueneme, California during 1965-68. 
Field tests were conducted in San Francisco Bay and the Gulf of Mexico for objects 
that were allowed to settle into the soil for some time. At these places the seabed 
is composed of silty clay whose permeability is extremely low. From these data Liu 
(1969) proposed an empirical formula relating the breakout force and time for mud ; 
the scatter of measured data was, understandably, rather large. Liu also suggested 
three possible mechanisms for breakout : ( 1 )  Soil shear failure. When the interior shear 
stress exceeds the yield strength, fractures develop, leading to failure. (2) Soil tension 
failure. If the top layer of the soil is fine clay, fluid saturation diminishes the cohesive 
strength of mud. (3) Failure of adhesion between soil and the object. This is the 
dominant mechanism when the top soil is sandy and the object surface is smooth. 

It is evident that different theories are needed for different soil environments. Muga 
(1968) reported a two-dimensional numerical theory which was aimed at the shear 
failure mechanism ; he treated the soil as a one-phase elastic/perfect-plastic continuum. 
The soil/object bond was assumed to be infinite. To study the third mechanism, i.e. 
loss of bonding between soil and object, Harleman k Shamir (1963, private 
communication) have performed two-dimensional tests on a saturated sandbed in a 
pail. They examined circular cylinders pressed into the sandbed to  a depth of 4- or 
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:-cylinder radius. Their data were also quite scattered. Relevant theories were not 
available until recently. 

If the seabed is regarded as a rigid and impervious half space with a plane 
top, then the time required to pull up a circular disk of radius a from height h, to - 
height h is known to be 

according to the lubrication theory (Batchelor 1967, p. 228), where F is the applied 
vertical force and y the viscosity of water. This formula shows, however, no sudden 
change of dhldt a t  any time. If the initial height h, is zero, the time for pulling away 
the disk would be infinite. Clearly other physical factors must be considered. Now, 
for a sandy soil fluid can be withdrawn from within the seabed when the object is 
lifted up. This tends to reduce the suction in the gap and the time for breakout. Foda 
(1982) has proposed a theory which takes into account not only porosity but also the 
elasticity of the seabed. In his theory, a boundary-layer approximation of Mei & Foda 
(1981) was employed which asserted that the fluid flow in a porous seabed of small 
permeability was largely confined within a thin layer near the mud line, if the ha1 
time of breakout was much shorter than the consolidation time of the seabed. The 
remainder of the seabed was deformed but did not yield fluid to the gap. Despite this 
approximation, the ensuing analysis was rather complex. In  order to avoid lengthy 
computation of the elastic response of the soil skeleton, the displacement of the mud 
line directly beneath the gap was further assumed to be uniform, which likely 
introduced some quantitative inaccuracy. Also it is unclear whether the two physical 
factors considered by Foda, porosity and soil deformation, are of equal importance 
in the breakout from a sandy seabed under practical conditions, there being no 
comparison with well-controlled experiments. 

For sufficiently small uplift force per unit contact area or for relatively strong soils, 
one expects that the seabed can be treated as being porous but rigid. In this paper 
first we shall consider theoretically such a simple model for the loss of adhesion 
between an impervious body and the seabed, with a view to (1) providing math- 
ematically accurate solutions, (2) examining whether soil elasticity is qualitatively 
essential to breakout, and (3) studying the new case of a wedge-shaped gap. Instead 
of the continuity of the horizontal velocities at the soil-water interface as assumed 
by Foda, we shall apply the boundary condition found experimentally by Beavers 
& Joseph (1967), and justified theoretically by Saffman (1971), which implies a thin 
boundary layer in the porous solid. Although unpublished experimental data exist 
for a circular cylinder (Harleman & Shamir), the difference in geometry and the 
considerable experimental scatter prevent a meaningful comparison with theory. We 
shall therefore describe our own experiments on a saturated sand layer for an object 
with a flat bottom. Comparison with, and the practical relevance of, the rigid bed 
theory are discussed. 

2. Two-dimensional analysis 
We assume the bottom of the body and the top of the seabed, i.e. the mud line, 

to be flat. If p (x , t )  is the hydrodynamic pressure in the gap, then, by assuming 
creeping flow, the corresponding velocity within the gap is 

Y2 aP u(x,y,t) =--++y+B. 
2p ax 
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In  the porous seabed, the fluid is assumed to be incompressible 
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V - u -  = 0, (2.2) 
and the flow obeys Darcy’s law 

where u- is the seepage velocity in the seabed, q j  the pore pressure, $ the stream 
function, ,u the fluid viscosity and k the permeability. The pore pressure and stream 
function are harmonic if k and p are constants, which we assume. 

A t  the moving bottom of the body y = h(x,t), no slipping is allowed; hence: 

(2.4a) I (2.4b) for wedged gap 

where H is the maximum gap height at any t and L is the length of the gap. In the 
second (wedged gap) case, the edge a t  x = 0 is supposed to be always in contact with 
the soil (see figure 1) .  Since the slope H/L is anticipated to be small, u = 0 can be 
applied to  both gaps with sufficient accuracy, as is explained later. 

As for the kinematic condition on the horizontal velocity at the bottom of the gap 
(y = 0), Beavers & Joseph argue that there is a thin boundary layer below y = 0. If 
u- denotes the horizontal velocity just below the boundary layer, then 

O < x < L  
u = 0 for uniform gap 

d H x H  
dt L L 

= 

O < x < L ,  y = o  - - ak-i(u-u-), au 

a Y  
- 

where a is an empirical constant depending on the structure of the porous material, 
but is largely independent of viscosity. By regarding the boundary as the limit of 
a sharply changing inhomogeneous porous layer, theoretical justification of (2.5) has 
been given by Saffman (1971), who also points out that to lead order i t  is sufficient 
to use 

O < x < L ,  y = o  

since u- is of the order O ( k )  relative to u. Experiments by Beavers & Joseph for nickel 
foametalst with k = (1.0, 4.0, 8.2) x cm2 gave a = 0.78, 1.45, 4.0, respectively. 
For aloxitiest with k = 6.5 x cm2, a = O.The range of perme- 
abilities for sandy soils is very wide: from k = lo-* cm2 for fine sand to lop5 om2 for 
coarse sand. By extrapolation from a log-log plot, we estimate the corresponding 
value for a to be about 0.001 for very fine sand and 0.1 for coarse sand. More reliable 
values must await future experiments. 

Use of (2.4b) and (2.6) in (2.1) yields 

and 1.6 x 

for a wedged gap. For a uniform gap we simply omit the term - (dH/dt) (xH/L2) and 
replace all h by H in (2.7). 

t Foametal has a cellular structure consisting of irregularly shaped interconnected pores formed 
by a lattice construction, whereas aloxite is made from fused crystalline aluminum oxide grains 
held together with a ceramic bond (Beavers BE Joseph, 1976). 
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FIGURE 1. Definition sketches: (a) uniform gap, (6) wedged gap. 

By integrating the continuity equation for the gap fluid from y = 0 to y = h 
we get 

after using the Leibniz rule. Substituting (2.7) in (2.8) we see readily that the 
-(dH/dt) (xH/L2) term in (2.7) gives a contribution of O ( H / L ) 2  compared to the 
left-hand side dhldt. Hence we shall omit this term from (2.7) and (2.8); this omission 
amounts to letting u = 0 at y = h for a wedged gap also, as anticipated in the sentence 
following (2.4b). With this omission, we integrate (2.8) with respect to x to get 

where the point xo is chosen so that 

rh 

J u d y = O  a t x = x o .  
0 
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At the same point xo wc also define 

$(x,, 0, t )  = 0. 

For a uniform gap, we must take xo to be at the centre line 

xo = BL; (2.10) 

while for a wedged gap, we choose the left end, which is assumed to be contact with 
the soil surface at all times: 

xo = 0. (2.11) 

Outside the gap, the dynamic pressure in the fluid above the seabed can be 
approximated by zero, as is the usual practice in the theory of lubrication. Thus, 

p = q5 = 0,x  < 0 andx > L , y  = 0. (2.12) 

Since q5 and $ are harmonic conjugates, Cauchy’s formula gives 

(2.13) 

where the right-hand side is a principal-valued integral (Morse & Feshbach 1952 
vol. I, p. 371). Invoking the continuity of pressure along 0 < x < L, y = 0, we get 

(2.14) 
(x-+L) dH k 1 p(x’) dx’ ap h3 (1- 1 +ah/2kt), { &]x=FK!O XI-x ax2p 3 l+ah/& 

(2.15) 

for (:%::%) gap, respectively. 

the buoyant weight of the body; then total force balance requires that 
Let F be the applied vertical force per unit length in the z direction in excess of 

JoL p(x) dx = - F (2.16) 

for the uniform gap. For the wedged gap we assume that P is applied along the edge 
x = L ; moment balance requires that 

JoL xp (2) dx = - FL. (2.17) 

The restoring moment due to the buoyant weight is excluded. Equation (2.14) is an 
integro-differential equation for p(x, t )  and H ( t ) .  It must be supplemented with the 
boundary condition 

p ( L , t )  = o  t > o  (2.18) 
and the initial condition 

H(0)  = 0. (2.19) 

Equation (2.14) states, of course, that the rate of increase in water mass between 
x = xo and x = x equals the sum of the upward flux from the soil and the inward flux 
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from the edges. Now the characteristic physical quantities of this problem are F ,  L, 
k and /I. Let T be the timescale for breakout; then from (2.14) the order relationship 

(2.20) 

must follow. Eliminating H, we get the dependence of T on the physical parameters 

T = C  ($) - .  (2.21) 

The coefficient C should be of order unity; its precise value requires the explicit 
solution of (2.14). 

3. Method of numerical solution 
If the following non-dimensional variables are introduced : 

P = p L / F ,  f = x /L ,  a = (Lk)-ih, T = (Fkg/pLg)t, (3.1) 

and if one defines 

and (3.3) 

with 

for a uniform gap. For a wedge gap, (2.14) becomes 

with 

(3 .44  

(3.4b) 

( 3 . 5 4  

(3.5b) 

Equations ( 3 . 4 ~ )  and ( 3 . 5 ~ )  depend only on a single (porosity) parameter 8. 

conditions (2.18) and (2.19) for P and initial condition for c become, respectively, 
We should point out that B is always negative. For both gaps, the auxiliary (end) 

P ( 1 , T )  = 0 7 > 0 a(0) = 0. (3.61, (3.7) 
Since ( 3 . 4 ~ )  and ( 3 . 5 ~ )  have unknown left-hand sides and are linear in P, it is 

convenient to introduce an intermediate function 

Hence 

withfo(f) = f - 2  andfl(f) = it5". The total load or moment 
then yield immediately : 

(3.9) 

condition, (3.4b), (3.5b), 

(3.10), (3.11) 
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This procedure effectively decouples the dependence of the solution in space from 
time. 

Typical calculations proceed as follows. At  a given time, the latest value of a is 
used to calculate B(cr,/3) in (3.9), which is solved by discretization in the interval 
6 = [0,1]. A linear approximation of the function e(6) between successive grid points 
is used. The Cauchy integral is evaluated analytically; the first derivative is 
approximated by first-order differencing, and a linear system for (3.9) is solved. The 
end condition (3.6) is essential in the solution procedure. Once dui/d7 is available from 
(3.10), the value of a, can be advanced and the procedure is repeated. In practice, 
it  was found to be more convenient to prescribe the values of a and advance 7 instead. 

Two special cases of (3.8) can be solved analytically. At 7 = 0, u = 0; hence B = 0 
and (3.8) reduces to the usual Cauchy integral equation well known in the theory of 
airfoils (Tricomi 1957, chap. 4). The uniform gap and wedged gap correspond to the 
cases of parabolic-arc and cubic-camber, respectively. The solutions are : 

( 3 . 1 2 ~ )  

(3.12b) 

These have been used to check the numerical results. In the limit of large value of 
u where the Cauchy integral becomes negligible, the differential equation for E(() 
is elementary, and the solution is simply 

(3.13) 

All numerical results of the uniform gap case were observed to approach this limit 
asymptotically and monotonically. 

Finally, it  is worth noting that by putting 5 = 1 in ( 3 . 4 ~ )  and ( 3 . 5 ~ )  we get 

(3.14) 

which is the equation of mass conservation in the region (B : $ : i) for a ( ~ ~ ~ ~ ~ ~ )  gap. 
Note that the second term on the right of (3.14), which corresponds to the horizontal 
flux from the edge a t  x = L, is always positive for all u > 0. 

4. Numerical results 
For sands, k = 10-8-10-5 cm2; the estimated range for a is 0.001- 0.125. The 

corresponding range of /3 is 0.1 to 3.16 for L = lo2 cm and 0.1 to 6.8 for L = lo3 cm. 
Sample variations of the dimensionless gap width with time are given in figure 2 for 
a uniform gap for /3 = 0.1, 1,  10, and 100. The last case, B = 100, is practically the 
limit of/3+ co where the no-slip boundary condition u = 0 applies on 0 < x < L, y = 0 
instead of (2.6). A breakout time can be defined by the vertical asymptote for each 
case from the plot. Clearly, pulling a t  one edge of the body is vastly more effective 
than pulling a t  the centre. Note that the initial portion of the log,, a vs. log,, 7 curve 
is straight with unit slope, and is independent of p. This implies a cc 7 as is given 
by (3.12). Physically in this stage the increase in gap width is due essentially to the 
upward flux from the porous bed. For physical insight, we also plot in figure 3 the 
time history of the ratio of the dimensionless horizontal flux (denoted by Q and 
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FIGURE 2. log,, cr us. log,, 7 where Q and 7 are the dimensionless gap width and time, respectively, 
as defined in (3.1). Daahed curves are for a wedged gap, and solid curves are for a uniform gap. 
For each gap, separate curves from left to right correspond to /3 = 0.1, 1, 10, 100. 
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FIGURE 3. Dimensionless horizontal flux Q us. Q. Q is the second term on the right of (3.14). 
Dashed curves are for a wedged gap, and solid curves are for a uniform gap. 
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corresponding to the second term on the right of (3.14)) to the total rate of area 
increase. It is evident that the breakout time roughly coincides with the time required 
for the horizontal flux to be the dominant (say 98 yo) part of the fluid flux into the 
gap. From figure 2 an estimate for the breakout time can be obtained: 7 = 7b, or, 

T b  = 7b@Lg/F@) (4.1) 

where 7b  is a constant depending weakly on the parameter /?. For /? = 0.1-00, 
7 b  N 0 . 4 0 . 6 2  for a uniform gap, and 71, N 0.25-0.38 for a wedged gap. Thus the 
breakout time is inversely proportional to the applied force in excess of the buoyant 
weight. For a deformable soil with shear modulus CT = lo7 N/m2, Foda obtained 
numerically tb a F.43 for values of k = 0.3 x lo-* and0.3 x eme, and L = loa cm. 
For these inputs, the breakout time according to (4.1) with 71, = 0.615 is of the same 
order of magnitude as Foda's. For example, for P = lo6 (Newtons), Tb = 100 s 
according to Foda (1982, figure 3, for fully saturated pore water); and Tb N 64 s 
from (4.1). 

5. Experiments 
In order to check the validity of our theory, we have carried out experiments in 

the laboratory. The experimental setup is sketched in figure 4. A plastic box of 50 cm 
height, 67 cm length, and 47 cm width was filled with a mixture of water and medium 
coarse construction sand = 0.245 mm) to a thickness of 32 cm. To minimize air 
entrainment, the mixture was stirred vigorously while being poured into the tank. 
All the measurements reported here were taken after the soil mass had two months 
to consolidate. A flat plate of plexiglass of length 45.40 cm and width 15.24 cm was 
hung on fine steel wires from two identical pulleys of radius 5.00 cm mounted on an 
axis transverse to the tank. A t  the midpoint of the axis was a pulley of radius 10.00 cm 
to which a basket of counterweight was attached. Before the plate was lowered to 
the top of the soil, the counterweight was exactly equal to the buoyant weight of 
the plate. A small circular cylinder of height 3.81 cm was fixed on, and protruded 
upverticallyfrom, the plate toremainin contact withaHewlett-Packarddisplacement 
transducer (Cat. No. DC-DT 7DCDT 7001) whose movement with time was traced 
on a Gould 2-channel chart recorder. Before each test, water was siphoned out from 
the top of the soil. The sand surface was smoothed and made horizontal using a 
scraping device. A thin sheet of water was added barely to cover the sand surface 
in order to avoid air bubbles beneath the plexiglass plate when being lowered and 
pressed down. To ensure that the plate was horizontal, the taut steel wires must 
vibrate with nearly equal amplitude when plucked at the same height by the same 
force. The sand surface near the plate was smoothed again, especially at the edges. 
Earlier tests indicated that, when the edges were square, imperfect contact or slight 
submergence could affect the consistency of results. We therefore machined the lower 
side of each edge to a sharp angle of 60" to the horizontal; the total contact width 
was slightly increased to L = 15.72 cm. Water was reintroduced slowly until part of 
the transducer needle was submerged. A given weight was put in the basket while 
the plate was held down. The chart recorder was started for 10-15 s to attain constant 
speed, then the plate was released. During the initial stage the chart trace of 
displacement T J ~ .  time is a nearly horizontal straight line. When breakout is 
approached, the chart trace rises sharply. The breakout time is defined by the 
intersecting point of the final tangent to the trace and the time axis. In  view of the 
long time elapsed, other definitions would lead to only minor differences. Some 
movement of sand is visible at the moment of breakout. 
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FIGURE 4. Experimental setup. Distances are in cm. 

The hydraulic conductivity K = k(pg/p) of a sand sample from the tank was 
obtained by a constant head permeometer commonly used in soil mechanics. The 
temperature of water was also taken. The average result of 3 tests at the same 
temperature, 19.7 "C,isK = +(0.060+ 0.063 + 0.064) N 0.062 cm/s. Thispermeometer 
is designed primarily for clay and has a porous screen a t  the bottom. If the flow has 
been started for a long time, fine particles can clog the screen and decrease the 
measured K drastically. Therefore the K values were taken shortly after a steady 
flow is reached. From this we use the viscosity p at 19.7 "C to compute 
k = @/pg) K = 0.65 x om2. Since soil samples taken out of the tank were 
unavoidably disturbed, we checked our results by the semi-empirical approach of 
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FIGURE 5. Comparison between theory and experiment for the measured break-out time. Mass in 
g (grams) is twice the mass of the counterweight because of the different pulley radii. Theory: dashed 
lines, (4.1) using the measured K and at temperature 17 "C; solid lines, (4.1) using the measured 
K and temperature 20°C. Experiments: 0, temperature range 17-18°C; 0,  18.1-19°C; +, 
19.1-20 "C. = co for upper two curves; /? = 0.40 for lower two curves. 

Loudon (1952). Based on extensive experiments with sand in an apparatus initially 
vacuumed to reduce entrained air, Loudon has found that Kozeny 's formula, 

is reliable. It relates the permeability to the specific surface S of grains (surface area 
per unit volume of grains) and porosity of soil n. We measured the porosity by taking 
a volume V of saturated sand and measured its mass before and after being dried 
in an oven at 50-100 O C  for over 16 h. The mass difference gave the porosity: 

n = (wet mass-dry mass)/pV, 

where p = density of water. The average of 5 runs was 0.45. In accordance with 
Loudon, the specific surface was calculated from the formula: 

where : 
= ZfiP,S, ,  

p, = percentage by weight passing through sieve size i ;  
S, = surface area of spheres uniformly distributed in size 

between the mesh d, and dl+, where d, is the 
opening of the last sieve passed and dl+, < d, ; 

Note that for perfect spheres f i  = 1. For rounded sand Loudon estimates that 
f, N 1.10, and for angular sand, ft N 1.40. Our measured permeability fits Kozeny's 
formula iff, = 1.17. 

f, = shape factor. 
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The measured breakout time in seconds is plotted against mass M of the counter 
weight? in the basket in figure 5. (The force per cm length is F = Mg/45.40). The 
experiments were conducted during a long period in the winter where the water 
temperature ranged from 1 7 O  to 20°, which affects ,u in (4.1). Taking the value 
k = 0.65 x om2 we estimate by extrapolating the data of Beavers & Joseph that 
a = 0.017. With the plate width L = 15.72 cm we get p = 0.40; the corresponding 
T,, is 0.45. In figure 5 theoretical curves for Tb = 0.45 and 0.615 are plotted. For 
each T~ the dashed curves correspond to 17 "C while the solid curves to 20 "C. Many 
measured points are seen to be close to the curves for /3 = 00 and lie above the curves 
for p = 0.40; this must be due to the fact that during much of the time fluid flow 
is essentially vertical from below the mud line. The accuracy of the displacement 
record is about 0.05 cm since the thickness of the pen trace is about 0.03 cm. With 
reference to figure 2, the dimensional H ( t )  is related to u by H = 0 . 0 2 2 ~  cm, since 
k = 0.65 x cma and L = 15.72 cm. If we take log,, u = 0 to be the end of the 
initial stage, the corresponding His only 0.022 cm, which is too small to compare with 
experiments meaningfully. In all tests, the values of H at breakout are in the range 
of 0.15-0.5 cm. The corresponding values of log,, u are in the range 0.8Ck1.35, which 
lie on the nearly vertical stretch of the curve in figure 2. Reliable comparison of 
H us. t between theory and experiment is therefore very difficult. Because of the long 
total time from the start, the errors in defining the breakout time in both experiment 
and theory are small and quantitative comparison is possible. 

6. Concluding remarks 
Our theory shows that sudden breakout can occur over a porous but rigid seabed. 

Judging from the field experiments reported by Liu (1969), the total force applied 
to an object around L = 2 m is often just slightly greater than the buoyant weight 
of the object. The typical net uplift per unit contact area is approximately 
0(104 N/ma) which is far less than the shear modulus of a typical firm sand 
( 107-108 N/m2). (In our experiments the unit uplift is only 3-15 N/m2). For still larger 
objects, the total net uplift force is likely to be an even smaller fraction of the total 
buoyant weight. Therefore, there must be many practical situations involving large 
objects, h e  firm sands, and small uplift forces, where the small soil displacement 
(compared to the gap width) allows the assumption of a rigid bed. Of course for 
smaller objects, it  is easier to apply large unit uplift, and soil deformation can be 
important. In that case however the poro-elastic theory can be quantitatively in error 
if crude assumptions on the gap geometry are made, as implied by the different results 
in the two cases treated in this paper. In  nature, further complicating factors affecting 
the adhesion mechanism studied herein can include fluidization and imperfect contact 
between the body surface and the soil; a more realistic model of the soil/water 
mixture is needed for a truly satisfactory theory. 
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t Because the centre pulley is twice aa large as the side pulleys, Mg is twice the actual counter 
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